We investigate the feasibility of using machine learning methods for predicting the Quality of Experience (QoE) of end users in the context of video streaming over satellite networks. To achieve this, we analyzed QoE and traffic data from 2,400 YouTube video sessions over emulated geosynchronous (GSO) satellite links. The objective is to determine whether existing learning methods, originally developed for wired or mobile networks, can be adapted to accurately predict key QoE factors over SATCOM. We particularly investigate a specific existing framework, which achieves outstanding performance in predicting resolution and initial delay. However, we point out some discrepancies in their hypothesis, leading to optimistic forecasting results. We then refine their methodology to ensure a complete independence between training and test datasets, leading to a fairer QoE video streaming forecast over satellite networks.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Forecasting YouTube QoE over SATCOM


    Beteiligte:
    Petrou, Matthieu (Autor:in) / Pradas, David (Autor:in) / Royer, Mickael (Autor:in) / Lochin, Emmanuel (Autor:in)


    Erscheinungsdatum :

    01.06.2023


    Format / Umfang :

    1658438 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Open systems protocols over military satcom

    Riley, A.J. | Tema Archiv | 1997


    Satcom

    Online Contents | 2001


    Satcom News

    Online Contents | 1994


    Controlling satcom costs

    Online Contents | 1994


    Chasing broadband satcom

    Debra Werner | Online Contents | 2016