We present a new method to robustly and efficiently analyze foreground when we detect background for a fixed camera view by using mixture of Gaussians models and multiple cues. The background is modeled by three Gaussian mixtures as in the work of Stauffer and Grimson (1999). Then the intensity and texture information are integrated to remove shadows and to enable the algorithm working for quick lighting changes. For foreground analysis, the same Gaussian mixture model is employed to detect the static foreground regions without using any tracking or motion information. Then the whole static regions are pushed back to the background model to avoid a common problem in background subtraction /spl times/ fragmentation (one object becomes multiple parts). The method was tested on our real time video surveillance system. It is robust and run about 130 fpsfor color images and 150 fps for grayscale images at size 160/spl times/120 on a 2GB Pentium IV machine with MMX optimization.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Robust and efficient foreground analysis for real-time video surveillance


    Beteiligte:
    Ying-Li Tian, (Autor:in) / Lu, M. (Autor:in) / Hampapur, A. (Autor:in)


    Erscheinungsdatum :

    01.01.2005


    Format / Umfang :

    537402 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Robust and efficient foreground analysis in complex surveillance videos

    Tian, Y. / Senior, A. / Lu, M. | British Library Online Contents | 2012




    Two video analysis applications using foreground/background segmentation

    Zivkovic, Z. / Petkovic, M. / van Mierlo, R. et al. | British Library Conference Proceedings | 2003


    Video-based real-time surveillance of vehicles

    Srivastava, S. / Delp, E.J. | British Library Online Contents | 2013