Road accidents involving pedestrians remain a leading cause of mortality worldwide. As autonomous driving technology advances to address this issue, Deep Reinforcement Learning (DRL) has emerged as a promising approach for teaching vehicles to navigate safely, particularly in avoiding pedestrians. This paper presents a DRL algorithm for pedestrian avoidance in autonomous four-wheeled vehicles, simulated using Webots and Deepbots framework. This study employs stochastic and deterministic algorithms to train the vehicle in specific simulated scenarios. The study also aims to enhance pedestrian avoidance capabilities, advance autonomous vehicle safety, and address a challenge in fully autonomous vehicles capable of drivers' and pedestrians' safety. The study also aims to provide a fundamental approach for further improvement on safer autonomous driving DRL algorithms in Webots simulators in the future.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Pedestrian Avoidance Simulation by Deep Reinforcement Learning Using Webots


    Beteiligte:


    Erscheinungsdatum :

    18.02.2025


    Format / Umfang :

    1005459 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Pedestrian Collision Avoidance Using Deep Reinforcement Learning

    Rafiei, Alireza / Fasakhodi, Amirhossein Oliaei / Hajati, Farshid | Springer Verlag | 2022



    Performance evaluation of vehicular platoons using Webots

    Karoui, Oussama / Guerfala, Emna / Koubaa, Anis et al. | Wiley | 2017

    Freier Zugriff

    Performance evaluation of vehicular platoons using Webots

    Karoui, Oussama / Guerfala, Emna / Koubaa, Anis et al. | IET | 2017

    Freier Zugriff

    Collision avoidance in pedestrian-rich environments using deep learning

    Bouchamla, Hanene / Boumaiza, Zied / Mabrouk, Walid Ben et al. | IEEE | 2024