High-accuracy vehicular self-localization plays an important role in autonomous driving. In this paper, we investigate the problem of estimating an autonomous vehicle's location using computer vision and LiDAR information, with respect to (w.r.t.) a reference map composed of landmarks from the environment. The map is generated off-line using static roadside objects such as traffic signs, traffic lights and road-side poles, which are organized into a graph for calibration. We use deep learning techniques to perform automatic feature extraction from sensor measurements. Specifically, we use a Convolutional Neural Network (CNN) to extract features from RGB images captured by an on-vehicle camera and use a Graph Neural Network (GNN) to integrate measurements from LiDAR scans. The vehicle's location is estimated from a regression neural network by comparing the extracted features from the real-time measurements with the calibration landmark map. In our experiments, we perform evaluations using 2 datasets and demonstrate that our approach achieves the state-of-the-art localization accuracy.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Location Learning for AVs: LiDAR and Image Landmarks Fusion Localization with Graph Neural Networks


    Beteiligte:
    Kang, Qiyu (Autor:in) / She, Rui (Autor:in) / Wang, Sijie (Autor:in) / Tay, Wee Peng (Autor:in) / Navarro, Diego Navarro (Autor:in) / Hartmannsgruber, Andreas (Autor:in)


    Erscheinungsdatum :

    08.10.2022


    Format / Umfang :

    2314419 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch





    LOCALIZATION USING DYNAMIC LANDMARKS

    LIN SÖRSTEDT JOAKIM / SCHINDLER ANDREAS / GUSTAFSSON TONY | Europäisches Patentamt | 2024

    Freier Zugriff

    Improving vehicle localization using pole-like landmarks extracted from 3-D lidar scans

    Lee, Sheng-Wei / Lin, Peng-Wei / Fu, Yuan-Ting et al. | IEEE | 2020


    IMPROVING VEHICLE LOCALIZATION USING POLE-LIKE LANDMARKS EXTRACTED FROM 3-D LIDAR SCANS

    Lee, Sheng-Wei / Lin, Peng-Wei / Fu, Yuan-Ting et al. | British Library Conference Proceedings | 2020