This paper addresses the problem of calibrating camera lens distortion, which can be significant in medium to wide angle lenses. While almost all existing nonmetric distortion calibration methods need user involvement in one form or another,we present an approach to distortion calibration based on the robust the-least-median-of-squares (LMedS) estimator. Our approach is thus able to proceed in a ful ly-automatic manner while being less sensitive to erroneous input data such as image curves that are mistakenly considered as projections of 3D linear segments. Our approach uniquely uses fast, closed-form solutions to the distortion coefficients, which serve as an initial point for a non-linear optimization algorithm to straighten imaged lines. Moreover we propose a method for distortion model selection based on geometrical inference.Successful experiments to evaluate the performance of this approach on synthetic and real data are reported.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Statistically Robust Approach to Lens Distortion Calibration with Model Selection


    Beteiligte:


    Erscheinungsdatum :

    01.06.2003


    Format / Umfang :

    444785 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Nonmetric Lens Distortion Calibration: Closed-form Solutions, Robust Estimation and Model Selection

    El-Melegy, M. / Farag, A. / IEEE | British Library Conference Proceedings | 2003



    GNSS Statistically derived abs speedometer calibration

    Europäisches Patentamt | 2018

    Freier Zugriff

    Lens Distortion Calibration Method for Linear Array Cameras

    Fang, S. / Xia, X. / Xiao, Y. et al. | British Library Online Contents | 2013


    Differential Methods for Nonmetric Calibration of Camera Lens Distortion

    Ahmed, M. T. / Farag, A. A. / IEEE | British Library Conference Proceedings | 2001