Dynamic/Kinematic model is of great significance in decision and control of intelligent vehicles. However, due to the singularity of dynamic models at low speed, kinematic models have been the only choice under such driving scenarios. Inspired by the concept of backward Euler method, this paper presents a discrete dynamic bicycle model feasible at any low speed. We further give a sufficient condition, based on which the numerical stability is proved. Simulation verifies that (1) the proposed model is numerically stable while the forward-Euler discretized dynamic model diverges; (2) the model reduces forecast error by up to 65% compared to the kinematic model. As far as we know, it is the first time that a dynamic bicycle model is qualified for urban driving scenarios involving stop-and-go tasks.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Numerically Stable Dynamic Bicycle Model for Discrete-time Control


    Beteiligte:
    Ge, Qiang (Autor:in) / Sun, Qi (Autor:in) / Li, Shengbo Eben (Autor:in) / Zheng, Sifa (Autor:in) / Wu, Wei (Autor:in) / Chen, Xi (Autor:in)


    Erscheinungsdatum :

    11.07.2021


    Format / Umfang :

    1533952 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Fast and Numerically Stable Circle Fit

    Abdul-Rahman, H. | British Library Online Contents | 2014


    Numerically Stable Ellipsoidal State Bounding Algorithm

    Wei, C. / Xianfang, S. | British Library Online Contents | 2007


    Stable student bicycle

    WANG KUNQIAO | Europäisches Patentamt | 2020

    Freier Zugriff

    Stable bicycle frame

    ZOU HONGSHENG / ZOU YINJUN / HE FAJUN | Europäisches Patentamt | 2023

    Freier Zugriff