The analysis of large amounts of multidimensional road traffic data for anomaly detection is a complex task. Visual analytics can bridge the gap between computational and human approaches to detecting anomalous behavior in road traffic, making the data analysis process more transparent. In this paper, we present a visual analytics framework that provides support for: 1) the exploration of multidimensional road traffic data; 2) the analysis of normal behavioral models built from data; 3) the detection of anomalous events; and 4) the explanation of anomalous events. We illustrate the use of this framework with examples from a large database of real road traffic data collected from several areas in Europe. Finally, we report on feedback provided by expert analysts from Volvo Group Trucks Technology, regarding its design and usability.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Anomaly Detection for Road Traffic: A Visual Analytics Framework


    Beteiligte:
    Riveiro, Maria (Autor:in) / Lebram, Mikael (Autor:in) / Elmer, Marcus (Autor:in)


    Erscheinungsdatum :

    01.08.2017


    Format / Umfang :

    2361078 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch





    Traffic analytics system for defining road networks

    LEWIS DANIEL JACOB / ZHANG XIAOCHEN / NGUYEN BRENDA | Europäisches Patentamt | 2022

    Freier Zugriff

    TRAFFIC ANALYTICS SYSTEM FOR DEFINING ROAD NETWORKS

    LEWIS DANIEL JACOB / ZHANG XIAOCHEN / NGUYEN BRENDA | Europäisches Patentamt | 2020

    Freier Zugriff