This paper presents an innovative approach to the development of a semi-supervised Support Vector Machine aimed at classifying radio frequency signals in the communication systems of unmanned aerial vehicles. It assumes the possibility of overlapping distributions of different types of signals. The cost function is modified by introducing penalty elements for misclassification based on a linear function of the distance between the signal and the classification hyperplane. A voting method using different kernels is employed to integrate the predictions from various models. The optimization of hyperparameters is carried out using the Optuna framework.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Semi-Supervised Support Vector Machine for Classification of Radio Frequency Signals in Unmanned Aerial Vehicles


    Beteiligte:


    Erscheinungsdatum :

    22.10.2024


    Format / Umfang :

    310636 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Dock Support For Unmanned Aerial Vehicles

    KOZLENKO YEVGENIY / THOMPSON BENJAMIN SCOTT / YE JACK ZI QI et al. | Europäisches Patentamt | 2023

    Freier Zugriff

    RADIO NETWORK AUTOMATION USING UNMANNED AERIAL VEHICLES

    CUI ZHI / MANG XIAOWEN | Europäisches Patentamt | 2024

    Freier Zugriff

    Detection and classification of unmanned aerial vehicles

    HAMMINGA SIETE / PORTEGIJS BART / WESTRA HYLKE JURJEN LIJSBERT | Europäisches Patentamt | 2024

    Freier Zugriff

    DETECTION AND CLASSIFICATION OF UNMANNED AERIAL VEHICLES

    HAMMINGA SIETE / PORTEGIJS BART / WESTRA HYLKE JURJEN LIJSBERT | Europäisches Patentamt | 2022

    Freier Zugriff