Federated learning (FL) is a promising paradigm that enables collaboration among edge devices to train a neural network while preserving data privacy. This paper considers a previously unexamined scenario of over-the-air FL systems with model heterogeneity, where clients with varying computing capacities adopt local models comprising subsets of global parameters, and over-the-air computation is employed to accelerate parameter aggregation. We investigate three key design considerations, namely, subnet creation, client selection, and client composition, and assess their impact on signal distortion resulting from over-the-air computation and on the accuracy of model learning. Our results provide insights into the effects of each design aspect on the FL system’s performance and convergence.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Over-the-Air Federated Learning with Model Heterogeneity: A Comparative Study


    Beteiligte:
    Lai, Yi-Cheng (Autor:in) / Chang, Ronald Y. (Autor:in) / Chiu, Wei-Yu (Autor:in)


    Erscheinungsdatum :

    07.10.2024


    Format / Umfang :

    5925293 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Federated Representation Learning With Data Heterogeneity for Human Mobility Prediction

    Zhang, Xiao / Wang, Qilin / Ye, Ziming et al. | IEEE | 2023


    Federated Learning Framework Coping with Hierarchical Heterogeneity in Cooperative ITS

    Song, Rui / Zhou, Liguo / Lakshminarasimhan, Venkatnarayanan et al. | IEEE | 2022



    Cooperative Relay Assisted Federated Learning over Fading Channels

    Dong, Zhihao / Zhu, Xu / Cao, Jie et al. | IEEE | 2024


    Deep Learning Based Coded Over-the-Air Computation for Personalized Federated Learning

    Chen, Danni / Lei, Ming / Zhao, Ming-Min et al. | IEEE | 2023