In this paper, a navigation situation adaptive learning-based path planning (NSAL-PP) scheme is created for a maritime autonomous surface ships (MASS) with a hierarchical deep reinforcement learning (HDRL) algorithm. In the first level of hierarchy, the MASS navigational situation is adaptively learnt from the ontology theory and the Protégé logical language in terms of entities and attributes. In the second level of hierarchy, path planning skills are learnt by combining with deep Q-learning, the environment model, ship behavior space, reward function and exploration and utilization strategy. Specifically, the reward function consists of safety and navigational task. Finally, the simulations are built in the Python and 2D-Pygame platform, with Tianjin Port of China as a case study. Both simulation and experimental results demonstrate that the proposed NSAL-PP method is feasible and the collision free navigation is achieved, especially for narrow channel (waterway).


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Navigation Situation Adaptive Learning-Based Path Planning of Maritime Autonomous Surface Ships


    Beteiligte:
    Wang, Chengbo (Autor:in) / Zhang, Xinyu (Autor:in) / Wang, Leihao (Autor:in)


    Erscheinungsdatum :

    22.10.2021


    Format / Umfang :

    1361094 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Path Planning of Maritime Autonomous Surface Ships in Unknown Environment with Reinforcement Learning

    Wang, Chengbo / Zhang, Xinyu / Li, Ruijie et al. | British Library Conference Proceedings | 2019


    Maritime Autonomous Surface Ships

    GWLB - Gottfried Wilhelm Leibniz Bibliothek | 2024

    Freier Zugriff

    Maritime Autonomous Surface Ships

    TIBKAT | 2024

    Freier Zugriff

    Survey on Collision-Avoidance Navigation of Maritime Autonomous Surface Ships

    Wang, Chengbo / Wang, Ning / Xie, Guangming et al. | Springer Verlag | 2021


    Adaptive federated filter–combined navigation algorithm based on observability sharing factor for maritime autonomous surface ships

    Guo, Muzhuang / Zhou, Xiaomin / Guo, Chen et al. | Taylor & Francis Verlag | 2024

    Freier Zugriff