Recently, millimeter wave (mmWave) imaging has received widespread attention. However, due to its nonlinearity and ill-posedness, it is challenging to reconstruct the precise electromagnetic properties of unknown targets from the measured scattered fields. In this paper, a new concentrative intelligent reflecting surface (IRS) aided computational imaging scheme is proposed. In the scheme, by dividing the region of imaging (ROI) into pixels, the imaging process is transformed into a compressed sensing problem. This paper proposes a fast block sparse Bayesian learning (BSBL) algorithm, which exploits the block sparsity of the reflection vector of ROI, and reduces the computational complexity through the generalized approximate message passing (GAMP) algorithm. Finally, the simulation results validate the performance advantages of the proposed algorithm and the efficiency of IRS in the imaging process.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Concentrative Intelligent Reflecting Surface Aided Computational Imaging via Fast Block Sparse Bayesian Learning


    Beteiligte:
    Yao, Junjie (Autor:in) / Zhang, Zhaoyang (Autor:in) / Shao, Xiaodan (Autor:in) / Huang, Chongwen (Autor:in) / Zhong, Caijun (Autor:in) / Chen, Xiaoming (Autor:in)


    Erscheinungsdatum :

    01.04.2021


    Format / Umfang :

    2713805 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Truly Intelligent Reflecting Surface-Aided Secure Communication Using Deep Learning

    Song, Yizhuo / Khandaker, Muhammad R. A. / Tariq, Faisal et al. | IEEE | 2021



    Performance Analysis of Intelligent Reflecting Surface-aided NR-V2X Sidelink Communications

    Rehman, Abdul / Di Marco, Piergiuseppe / Valentini, Roberto et al. | IEEE | 2024


    Improved Selection Methods for Concentrative Cooperative Partners

    Wang, J. / Sha, X. / Lu, W. | British Library Online Contents | 2009