Predicting the future motion of surrounding road users is a crucial and challenging task for autonomous driving (AD) and various advanced driver-assistance systems (ADAS). Planning a safe future trajectory heavily depends on understanding the traffic scene and anticipating its dynamics. The challenges do not only lie in understanding the complex driving scenarios but also the numerous possible interactions among road users and environments, which are practically not feasible for explicit modeling. In this work, we tackle the above challenges by jointly learning and predicting the motion of all road users in a scene, using a novel convolutional neural network (CNN) and recurrent neural network (RNN) based architecture. Moreover, by exploiting grid-based input and output data structures, the computational cost is independent of the number of road users and multi-modal predictions become inherent properties of our proposed method. Evaluation on the nuScenes dataset shows that our approach reaches state-of-the-art results in the prediction benchmark.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Context-Aware Scene Prediction Network (CASPNet)


    Beteiligte:
    Schafer, Maximilian (Autor:in) / Zhao, Kun (Autor:in) / Buhren, Markus (Autor:in) / Kummert, Anton (Autor:in)


    Erscheinungsdatum :

    08.10.2022


    Format / Umfang :

    2681554 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Implicit Scene Context-Aware Interactive Trajectory Prediction for Autonomous Driving

    Lan, Wenxing / Li, Dachuan / Hao, Qi et al. | IEEE | 2024


    Vision-Based Holistic Scene Understanding for Context-Aware Human-Robot Interaction

    Giorgio De Magistris / Riccardo Caprari / Giulia Castro et al. | BASE | 2022

    Freier Zugriff

    METHOD AND APPARATUS FOR INTERACTION AWARE TRAFFIC SCENE PREDICTION

    STIMPSON ALEXANDER / RAJ SUGANDH | Europäisches Patentamt | 2020

    Freier Zugriff

    Method and apparatus for interaction aware traffic scene prediction

    STIMPSON ALEXANDER / RAJ SUGANDH | Europäisches Patentamt | 2021

    Freier Zugriff

    Context-Aware Multi-Task Learning for Traffic Scene Recognition in Autonomous Vehicles

    Lee, Younkwan / Jeon, Jihyo / Yu, Jongmin et al. | IEEE | 2020