In this paper, we present our recently developed stochastic driver-behavior model based on Gaussian mixture model (GMM) framework. The proposed driver-behavior modeling is employed to anticipate car-following behavior in terms of pedal control operations in response to the observable driving signals, such as the own vehicle velocity and the following distance to the leading vehicle. In addition, the proposed driver modeling allows adaptation scheme to enhance the model capability to better represent particular driving characteristics of interest (i.e., individual driving style) from the observed driving data themselves. Validation and comparison of the proposed driver-behavior models on realistic car-following data of several drivers showed the promising results. Furthermore, the adapted driver models showed consistent improvement over the unadapted driver models in both short-term and long-term predictions.
Modeling and adaptation of stochastic driver-behavior model with application to car following
01.06.2011
227125 byte
Aufsatz (Konferenz)
Elektronische Ressource
Englisch
Modeling and Adaptation of Stochastic Driver-Behavior Model with Application to Car Following
British Library Conference Proceedings | 2011
|Driver Identification through Stochastic Multi-State Car-Following Modeling
ArXiv | 2020
|Stochastic Modeling of Battery Electric Vehicle Driver Behavior
Transportation Research Record | 2014
|Application of Naturalistic Driving Data to Modeling of Driver Car-Following Behavior
Online Contents | 2013
|