This paper explores the use of radar odometry for Global Positioning System-denied navigation. The range progression from arbitrary ground-based point scatterers is used to estimate an unmanned aerial vehicle's relative motion. In high clutter environments, the recursive-RANSAC algorithm provides robust and efficient feature identification, data association, and tracking. The tracked feature range measurements are integrated with inertial measurement unit measurements in an extended Kalman filter. Real flight data from a cluttered environment are used to validate the results.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Radar odometry with recursive-RANSAC


    Beteiligte:


    Erscheinungsdatum :

    01.08.2016


    Format / Umfang :

    1330176 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Performance evaluation of 1-point-RANSAC visual odometry

    Scaramuzza, D. | British Library Online Contents | 2011


    Combining Edge and One-Point RANSAC Algorithm to Estimate Visual Odometry

    Cáceres Hernández, Danilo / Dung Hoang, Van / Hyun Jo, Kang | BASE | 2018

    Freier Zugriff


    Predictive monocular odometry (PMO): What is possible without RANSAC and multiframe bundle adjustment?

    Fanani, Nolang / Stürck, Alina / Ochs, Matthias et al. | British Library Online Contents | 2017


    Comparison and Analysis of Recursive-RANSAC for Multiple Target Tracking

    Niedfeldt, Peter C. / Ingersoll, Kyle / Beard, Randal W. | IEEE | 2017