This paper presents a method for pedestrian detection with stereovision and graph comparison. Images are segmented thanks to the NCut method applied on a single image, and the disparity is computed from a pair of images. This segmentation enables us to keep only shapes of potential obstacles, by eliminating the background. The comparison between two graphs is accomplished with an inner product for graph, and then the recognition stage is performed learning is done among several pedestrian and non-pedestrian graphs with SVM method. The results that are depicted are preliminary results but they show that this approach is very promising since it clearly demonstrates that our graph representation is able to deal with the variability of pedestrian pose.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Pedestrian detection using stereo-vision and graph kernels


    Beteiligte:
    Suard, F. (Autor:in) / Guigue, V. (Autor:in) / Rakotomamonjy, A. (Autor:in) / Benshrair, A. (Autor:in)


    Erscheinungsdatum :

    01.01.2005


    Format / Umfang :

    1013726 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Pedestrian detection using stereo night vision

    Xia Liu, / Fujimura, K. | IEEE | 2003


    Pedestrian Detection Using Stereo Night Vision

    Liu, X. / Fujimura, K. / IEEE | British Library Conference Proceedings | 2003


    Pedestrian Detection using Stereo-vision and GraphKernels

    Suard, F. / Rakotomamonjy, A. / Bensrhair, A. et al. | British Library Conference Proceedings | 2005


    Infrared Stereo Vision-based Pedestrian Detection

    Bertozzi, M. / Broggi, A. / Lasagni, A. et al. | British Library Conference Proceedings | 2005


    Infrared stereo vision-based pedestrian detection

    Bertozzi, M. / Broggi, A. / Lasagni, A. et al. | IEEE | 2005