In this paper we propose an adaptive background estimation algorithm for outdoor video surveillance system. In order to enhance the adaptation to the slow illumination changes and variant input noise in long-term running, an improved Kalman filtering model based on local-region is discussed to dynamically estimate a background image, in which the parameters are predicted by a RLS adaptive filter accurately. The experiment results on real-world image sequences show that the algorithm performs robustly and effectively.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Adaptive background estimation for real-time traffic monitoring


    Beteiligte:
    Dashan Gao, (Autor:in) / Jie Zhou, (Autor:in)


    Erscheinungsdatum :

    01.01.2001


    Format / Umfang :

    569476 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Adaptive Background Estimation for Real-Time Traffic Monitoring

    Gao, D. / Zhou, J. / IEEE | British Library Conference Proceedings | 2001


    Real-Time Traffic Light Detection With Adaptive Background Suppression Filter

    Shi, Zhenwei / Zou, Zhengxia / Zhang, Changshui | IEEE | 2016




    An adaptive, real-time, traffic monitoring system

    Rodriguez, Tomas / Garcia, Narciso | Tema Archiv | 2010