Considering the spatial interaction and vehicle history temporal features of approaching driving vehicles is a key step in decision making and trajectory planning for autonomous vehicles. In order to solve the problems of insufficient spatial-temporal feature extraction and multimodal vehicle trajectory prediction, a model for multimodal vehicle trajectory prediction integrating spatial and temporal features is proposed in this paper. First, a dynamic attention-based graphical neural network and a fused attention-based temporal convolutional network (TCN) are used to capture spatial interaction features as well as the remote temporal dependence of vehicles in the target region. Secondly, a gating unit for feature fusion is designed to achieve effective fusion of spatial-temporal features, and then a decoder is used to generate probability distributions of future vehicle trajectories in the target region. Finally, the proposed model is evaluated on the publicly available NGSIM dataset and compared with previous models. Simulation results show that the proposed model provides advanced improvements in both the prediction error and the probability distribution of the predicted future trajectories.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A multimodal vehicle trajectory prediction method with spatio-temporal feature fusion


    Beteiligte:
    Wang, Haoze (Autor:in) / Shi, Xin (Autor:in) / Sun, Mengwei (Autor:in)


    Erscheinungsdatum :

    04.08.2023


    Format / Umfang :

    768335 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Group Vehicle Trajectory Prediction With Global Spatio-Temporal Graph

    Xu, Dongwei / Shang, Xuetian / Liu, Yewanze et al. | IEEE | 2023


    Deep spatio-temporal feature fusion with compact bilinear pooling for multimodal emotion recognition

    Nguyen, Dung / Nguyen, Kien / Sridharan, Sridha et al. | British Library Online Contents | 2018


    SHIP TRAJECTORY FEATURE POINT EXTRACTION-BASED SPATIO-TEMPORAL DP METHOD

    MA YONG / JIANG HAIYANG / YAN XINPING | Europäisches Patentamt | 2022

    Freier Zugriff

    Air route network flow prediction method based on spatio-temporal feature fusion

    NIU KEXIN / LI GUIFANG / WAN LILI et al. | Europäisches Patentamt | 2023

    Freier Zugriff