This article proposes a consensus-based distributed nonlinear filter with kernel mean embedding (KME) to fill the gap of kernel-based filters for distributed sensor networks. Specifically, to approximate the posterior distribution, the system state is embedded into a higher dimensional reproducing kernel Hilbert space (RKHS), and then the nonlinear measurement function is linearly represented. As a result, an update rule for the KME of posterior distribution is established in the RKHS. To demonstrate that the proposed distributed filter can achieve centralized estimation accuracy, a centralized filter is first developed by extending the standard Kalman filter in the state space to the RKHS. Then, the proposed distributed filter is proved to be equivalent to the centralized one. Two examples highlight the effectiveness of the developed filters in target tracking scenarios, including a nearly constantly moving target and a turning target, respectively, with range, bearing, and range-rate measurements.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Consensus-Based Distributed Nonlinear Filtering With Kernel Mean Embedding


    Beteiligte:
    Guo, Liping (Autor:in) / Wang, Jimin (Autor:in) / Zhao, Yanlong (Autor:in) / Zhang, Ji-Feng (Autor:in)


    Erscheinungsdatum :

    01.04.2025


    Format / Umfang :

    913783 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Energy Efficient Distributed Clustering Consensus Filtering Algorithm for Wireless Sensor Networks

    Sun, Chao / Yang, Chunxi / Fan, Sha et al. | British Library Online Contents | 2015


    Common and Special Embedding-Based Collaborative Filtering

    Jian, Meng / Zhang, Chenlin / Xiang, Ye et al. | Springer Verlag | 2022


    Common and Special Embedding-Based Collaborative Filtering

    Jian, Meng / Zhang, Chenlin / Xiang, Ye et al. | British Library Conference Proceedings | 2022


    Kernel embedding-based state estimation for colored noise systems

    Lee, Kyuman / Choi, Youngjun / Johnson, Eric N. | IEEE | 2017


    Composite Weighted Average Consensus Filtering

    Chen, Hao / Wang, Jianan / Jun, Zhang et al. | IEEE | 2018