Recurrent neural networks (RNNs) can be used to handle sequential patterns and have been used for speech recognition. To overcome the shortcomings of RNN, recurrent sub neural networks (RSNNs) are used, where an RSNN is built independently for each class. The training algorithm of the RSNN is based on the backpropagation algorithm. Speaker dependent connected Chinese digit-speech recognition experiments were carried out. Some factors influencing the performance of RSNNs have been studied. The experiments show that RSNN is easier to train and gives higher performance than RNN.<>


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Recurrent sub neural networks applied to speech recognition


    Beteiligte:
    Wei-Ying Li (Autor:in) / Xiao-Mei Tang (Autor:in) / Ke-Chu Yi (Autor:in) / Zheng Hu (Autor:in)


    Erscheinungsdatum :

    01.01.1994


    Format / Umfang :

    328232 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Recurrent Sub Neural Networks Applied to Speech Recognition

    Li, W. Y. / Tang, X. M. / Yi, K. C. et al. | British Library Conference Proceedings | 1994


    Visual speech recognition by recurrent neural networks

    Rabi, G. / Si Wei Lu | British Library Online Contents | 1998


    Pose Based Action Recognition of Vulnerable Road Users Using Recurrent Neural Networks

    Kress, Viktor / Schreck, Steven / Zernetsch, Stefan et al. | IEEE | 2020



    New baseline correction algorithm for text-line recognition with bidirectional recurrent neural networks

    Morillot, O. / Likforman-Sulem, L. / Grosicki, E. | British Library Online Contents | 2013