Manifold learning has become a vital tool in data driven methods for interpretation of video, motion capture, and handwritten character data when they lie on a low dimensional, nonlinear manifold. This work extends manifold learning to classify and parameterize unlabeled data which lie on multiple, intersecting manifolds. This approach significantly increases the domain to which manifold learning methods can be applied, allowing parameterization of example manifolds such as figure eights and intersecting paths which are quite common in natural data sets. This approach introduces several technical contributions which may be of broader interest, including node-weighted multidimensional scaling and a fast algorithm for weighted low-rank approximation for rank-one weight matrices. We show examples for intersecting manifolds of mixed topology and dimension and demonstrations on human motion capture data.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Manifold clustering


    Beteiligte:
    Souvenir, R. (Autor:in) / Pless, R. (Autor:in)


    Erscheinungsdatum :

    01.01.2005


    Format / Umfang :

    301103 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Manifold Clustering

    Souvenir, R. / Pless, R. / IEEE | British Library Conference Proceedings | 2005


    Iterative Optimization Clustering Algorithm Based on Manifold Distance

    Wang, N. / Du, H. / Wang, S. | British Library Online Contents | 2009


    A Spectral Clustering Algorithm Based on Manifold Distance Kernel

    Tao, X. / Song, S. / Cao, P. et al. | British Library Online Contents | 2012



    Joint Manifold Distance: A New Approach to Appearance Based Clustering

    Fitzgibbon, A. / Zisserman, A. / IEEE | British Library Conference Proceedings | 2003