In view of the diversity and complexity of the landscape environment and spatial layout of the port, the behaviors of relevant personnel and vehicles are relatively hidden, which leads to the problem that they can't be accurately identified in the surveillance video. In this paper, we used an improved object detection algorithm for personnel and vehicles applied in port environment, which combines the feature pyramid networks for feature extraction based on ResNet-101 and Faster R-CNN object detection network. The experimental results show that the algorithm has good real-time performance, and effectively improves the accuracy of related personnel and vehicle location detection and recognition in the port environment.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Pedestrian and vehicle detection via port surveillance video


    Beteiligte:
    Chen, Xinqiang (Autor:in) / Wang, Zichuang (Autor:in) / Yang, Yongsheng (Autor:in) / Sun, Yang (Autor:in) / Ling, Jun (Autor:in) / Zheng, Jinbiao (Autor:in)


    Erscheinungsdatum :

    22.10.2021


    Format / Umfang :

    3857109 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Vehicle and pedestrian collision prevention system based on smart video surveillance and C2I communication

    Becker, Daniel / Schaufele, Bernd / Einsiedler, Jens et al. | IEEE | 2014



    Real-Time Pedestrian-Vehicle Conflict Detection Algorithm Using Video Data

    Liu, Shuai / Zhu, Tao / Zhang, Yingying et al. | ASCE | 2014


    Vehicle and Pedestrian Video-tracking: A Review

    Fahmidha, Rukhiya / Jose, Sajeev K | IEEE | 2020