We present a new off-line word recognition system that is able to recognise unconstrained handwritten words from their grey-scale images, and is based on structural and relational information in the handwritten word. We use Gabor filters to extract features from the words, and then use an evidence-based approach for word classification. A solution to the Gabor filter parameter estimation problem is given, enabling the Gabor filter to be automatically tuned to the word image properties. Our experiments show that the proposed method achieves reasonably high recognition rates compared to standard classification methods.<>


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Feature extraction and analysis of handwritten words in grey-scale images using Gabor filters


    Beteiligte:
    Buse, R. (Autor:in) / Zhi-Qiang Liu (Autor:in)


    Erscheinungsdatum :

    01.01.1994


    Format / Umfang :

    496771 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Feature Extraction and Analysis of Handwritten Words in Gray-scale Images using Gabor Filters

    Buse, R. / Liu, Z.-Q. / IEEE; Signal Processing Society | British Library Conference Proceedings | 1994



    Handwritten Chinese Character Recognition using Spatial Gabor Filters and Self-Organizing Feature Maps

    Deng, D. / Chan, K. P. / Yu, Y. et al. | British Library Conference Proceedings | 1994


    Multi-resolution feature extraction from Gabor filtered images

    Rizki, M.M. / Tamburino, L.A. / Zmuda, M.A. | IEEE | 1993