We present a real time non-invasive system that infers user stress level from evidences of different modalities. The evidences include physical appearance (facial expression, eye movements, and head movements) extracted from video via visual sensors, physiological conditions collected from an emotional mouse, behavioral data from user interaction activities with the computer, and performance measures. We provide a Dynamic Bayesian Network (DBN) framework to model the user stress and these evidences. We describe the computer vision techniques we used to extract the visual evidences, the DBN model for modeling stress and the associated factors, and the active sensing strategy to collect the most informative evidences for efficient stress inference. Our experiments show that the inferred user stress level by our system is consistent with that predicted by psychological theories.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A Real-Time Human Stress Monitoring System Using Dynamic Bayesian Network


    Beteiligte:
    Wenhui Liao, (Autor:in) / Weihong Zhang, (Autor:in) / Zhiwei Zhu, (Autor:in) / Qiang Ji, (Autor:in)


    Erscheinungsdatum :

    01.01.2005


    Format / Umfang :

    272150 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Real Time Aircraft Stress Monitoring System

    GRIFFITHS ROBERT C / VOTH MITCHELL D | Europäisches Patentamt | 2018

    Freier Zugriff


    REAL-TIME MONITORING DEFORMATION OF BUILDING USING PHOTOGRAPHY DYNAMIC MONITORING SYSTEM

    Ge, Yongquan / Yu, Chengxin / Zhao, Tonglong et al. | BASE | 2021

    Freier Zugriff

    A Dynamic Bayesian Network-Based Real-Time Crash Prediction Model for Urban Elevated Expressway

    Xian Liu / Jian Lu / Zeyang Cheng et al. | DOAJ | 2021

    Freier Zugriff

    Dynamic Bayesian Network for Aircraft Wing Health Monitoring Digital Twin

    Li, Chenzhao / Mahadevan, Sankaran / Ling, You et al. | AIAA | 2017