Urban mobility is increasingly challenged by traffic congestion, leading to inefficiencies, environmental harm, and economic losses. This research presents an intelligent traffic control system that leverages cloud computing, big data analytics, and machine learning to optimize traffic flow and enhance urban mobility. By collecting and analyzing real-time traffic data from diverse sources, such as sensors, GPS devices, and social media, the system applies RandomForest algorithms for predictive modeling. The system offers dynamic traffic control strategies, including adaptive signal timings and route optimization, which respond to changing conditions in real time. The use of a cloud-based infrastructure ensures scalability and efficient data management. A user-friendly interface facilitates real-time inputs and monitoring, while vehicle simulation aids in predictive analysis and testing. This integrated approach promises to reduce congestion, minimize travel times, and improve overall safety, providing a scalable and flexible solution for urban traffic management.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Dynamic Traffic Optimization through Cloud-Enabled Big Data Analytics and Machine Learning for Enhanced Urban Mobility


    Beteiligte:


    Erscheinungsdatum :

    18.11.2024


    Format / Umfang :

    944876 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Machine Learning-Enabled Smart Transit: Real-Time Bus Tracking System for Enhanced Urban Mobility

    Kailash Varma, Nadimpalli Madana / Ahmed, Md. Irfan / Madhusudhan, G. et al. | IEEE | 2024


    Improving Urban Mobility in Dhaka: Machine Learning-Based Traffic Prediction

    Mozumder, Sayif Mahmmud / Alamgir Nishat, Tabassum / Bhuiyan, Bayezid Hasan et al. | IEEE | 2025


    Urban Traffic Monitoring from Mobility Data

    Liu, Zhidan / Wu, Kaishun | Springer Verlag | 2021