Multi-sensor fusion is currently the main way of autonomous driving perception. Among them, radar has been paid more and more attention by researchers due to its low cost and strong anti-interference. The fusion perception method of radar and image has gradually become a hot research field. Nevertheless, the high-noise data of radar brings the challenge of uncertain perception results. In order to solve these problems, this paper proposes a Transformer-based 2D object detection algorithm with the fusion of radar and images, which can effectively detect objects. And for the problem of uncertainty in perception results, a method for modeling regression and classification uncertainty is proposed. We validate the proposed method on the NuScenes dataset. Experimental results show that our method achieves higher detection performance compared to the baseline model and can estimate the uncertainty of the proposed algorithm in real traffic scenarios.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Radar-Image Fusion Transformer for Object Detection with Uncertainty Estimation


    Beteiligte:
    Zhao, Yang (Autor:in) / Wang, Xiao (Autor:in) / Cheng, Hong (Autor:in)


    Erscheinungsdatum :

    24.09.2023


    Format / Umfang :

    425225 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Automated vehicle object detection system with camera image and radar data fusion

    CHEN SUSAN / SCHWARTZ DAVID A / MANGALGIRI ANURADHA et al. | Europäisches Patentamt | 2018

    Freier Zugriff

    RADAR LIDAR OBJECT DETECTION USING RADAR AND LIDAR FUSION

    MENG XIAOLI / ZHOU LUBING / SHETTI KARAN RAJENDRA | Europäisches Patentamt | 2023

    Freier Zugriff

    Uncertainty Estimation in One-Stage Object Detection

    Kraus, Florian / Dietmayer, Klaus | IEEE | 2019


    Deep 4D Automotive Radar-Camera Fusion Odometry with Cross-Modal Transformer Fusion

    Zhuo, Guirong / Xiong, Lu / Zhou, Mingyu et al. | SAE Technical Papers | 2023


    On-Road Object Collision Point Estimation by Radar Sensor Data Fusion

    Choi, Woo Young / Lee, Seung-Hi / Chung, Chung Choo | IEEE | 2022