The accurate detection and classification of moving objects is a critical aspect of advanced driver assistance systems. We believe that by including the object classification from multiple sensor detections as a key component of the object's representation and the perception process, we can improve the perceived model of the environment. First, we define a composite object representation to include class information in the core object's description. Second, we propose a complete perception fusion architecture based on the evidential framework to solve the detection and tracking of moving objects problem by integrating the composite representation and uncertainty management. Finally, we integrate our fusion approach in a real-time application inside a vehicle demonstrator from the interactIVe IP European project, which includes three main sensors: radar, lidar, and camera. We test our fusion approach using real data from different driving scenarios and focusing on four objects of interest: pedestrian, bike, car, and truck.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Multiple Sensor Fusion and Classification for Moving Object Detection and Tracking


    Beteiligte:


    Erscheinungsdatum :

    01.02.2016


    Format / Umfang :

    1040209 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    RoadPlot-DATMO: Moving object tracking and track fusion system using multiple sensors

    Na, Kiin / Byun, Jaemin / Roh, Myongchan et al. | IEEE | 2015


    MOVING OBJECT DETECTION SENSOR

    KAWAHARA TAKESHI / HATANAKA HIROSHI / MORI RYOTA | Europäisches Patentamt | 2019

    Freier Zugriff

    Multiple-Sensor Based Multiple-Object Tracking

    Prof. Cheng, Hong | Springer Verlag | 2011