This paper describes a Reinforcement Learning (RL) application using Linear Quadratic Regulator (LQR) based tracking controller, which is augmented with a tracking error term. In order to deal with the steady-state errors, Linear Quadratic Tracker with Integrator (LQTI) is designed by adding an integration term of the tracking error in the state variable. Based on the LQTI, an online learning using the Integral Reinforcement Learning (IRL) is applied for the tracking problem to find the optimal control on the partially unknown continuous-time systems by regulating the augmented state variable. The optimal control solution and the performance of the method are verified through numerical simulation on two applications.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Linear Quadratic Tracker with Integrator using Integral Reinforcement Learning


    Beteiligte:
    Park, On (Autor:in) / Shin, Hyosang (Autor:in) / Tsourdos, Antonios (Autor:in)


    Erscheinungsdatum :

    01.11.2019


    Format / Umfang :

    386503 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Constrained Linear Quadratic Tracker for Optimal Performance Flight

    de Almeida, Fabio A. / Guerra, Eduardo Bento / d’Oliveira, Flávio Araripe et al. | AIAA | 2012




    Deep Reinforcement Learning based Aggressive Flight Trajectory Tracker

    Shadeed, Omar / Hasanzade, Mehmet / Koyuncu, Emre | AIAA | 2021


    A linear quadratic tracker for VTOL-UAV trajectory control with multivariable constraints

    Giroux, Richard / Gourdeau, Richard / Pelletier, Michel et al. | AIAA | 2000