Pedestrian crossing intention prediction (PCIP) is crucial for pedestrians' safety in autonomous driving. Existing methods do not use the interaction between pedestrians and cars for their prediction. In this paper, we argue that pedestrians' intentions are highly dependent on their interaction with the environment. Specifically, the trajectories of pedestrians and the dynamic of vehicles jointly affect the entire traffic environment in the future. Therefore, in this paper, we propose a novel pedestrian-vehicle information modulation network (PVIM). Particularly, we first propose a pedestrian-vehicle spatial context (PVSC) that effectively models the spatial dynamics between the pedestrian and ego-vehicle. Second, we design a temporal bilinear attention module that removes temporal redundancy and consolidates temporal correlation for more accurate predictions. We have conducted extensive experiments on the PIE pedestrian action prediction benchmark and have achieved state-of-the-art performance. Specifically, the proposed method achieves an accuracy of 0.91, outperforming the previous best by 2%.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Pedestrian-Vehicle Information Modulation for Pedestrian Crossing Intention Prediction


    Beteiligte:
    Xu, Li (Autor:in) / You, Shaodi (Autor:in) / He, Gang (Autor:in) / Li, Yunsong (Autor:in)

    Erschienen in:

    Erscheinungsdatum :

    01.03.2025


    Format / Umfang :

    21085701 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    PEDESTRIAN CROSSING PREDICTION METHOD AND PEDESTRIAN CROSSING PREDICTION DEVICE

    FANG FANG / TSUCHIYA CHIKAO / TAKEI SHOICHI et al. | Europäisches Patentamt | 2023

    Freier Zugriff

    PIT: Progressive Interaction Transformer for Pedestrian Crossing Intention Prediction

    Zhou, Yuchen / Tan, Guang / Zhong, Rui et al. | IEEE | 2023


    Pedestrian Crossing Intention Prediction at Red-Light Using Pose Estimation

    Zhang, Shile / Abdel-Aty, Mohamed / Wu, Yina et al. | IEEE | 2022


    PEDESTRIAN CROSSING INTENTION ESTIMATION METHOD AND APPARATUS, DEVICE, AND VEHICLE

    FAN SHIWEI / LI FEI / LI XIANGXU | Europäisches Patentamt | 2022

    Freier Zugriff

    Pedestrian crossing vehicle alarm

    KIM JI HUN | Europäisches Patentamt | 2021

    Freier Zugriff