The most standard image object detectors are usually comprised of one or multiple feature extractors or classifiers within a sliding window framework. Nevertheless, this type of approach has demonstrated a very limited performance under datasets of cluttered scenes and real life situations. To tackle these issues, LIDAR space is exploited here in order to detect 2D objects in 3D space, avoiding all the inherent problems of regular sliding window techniques. Additionally, we propose a relational parts-based pedestrian detection in a probabilistic non-iid framework. With the proposed framework, we have achieved state-of-the-art performance in a pedestrian dataset gathered in a challenging urban scenario. The proposed system demonstrated superior performance in comparison with pure sliding-window-based image detectors.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Pedestrian detection based on LIDAR-driven sliding window and relational parts-based detection


    Beteiligte:
    Oliveira, Luciano (Autor:in) / Nunes, Urbano (Autor:in)


    Erscheinungsdatum :

    01.06.2013


    Format / Umfang :

    3986577 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    PEDESTRIAN DETECTION BASED ON LIDAR-DRIVEN SLIDING WINDOW AND RELATIONAL PARTS-BASED DETECTION

    Oliveira, L. / Nunes, U. / Institute of Electrical and Electronics Engineers | British Library Conference Proceedings | 2013


    LIDAR and vision-based pedestrian detection system

    Premebida, C. / Ludwig, O. / Nunes, U. | British Library Online Contents | 2009


    Context-aware pedestrian detection using LIDAR

    Oliveira, L / Nunes, U | IEEE | 2010


    Body Parts Features-Based Pedestrian Detection for Active Pedestrian Protection System

    Lie Guo / Mingheng Zhang / Linhui Li et al. | DOAJ | 2016

    Freier Zugriff

    Pedestrian-Detection Method based on 1D-CNN during LiDAR Rotation

    Kunisada, Yuki / Yamashita, Takayoshi / Fujiyoshi, Hironobu | IEEE | 2018