The free-floating bike sharing systems (BSSs) are booming all over the world. How to rebalance the bikes is a problem faced by all operators. To tackle this problem, firstly, we compare five models to predict shared bikes demand and choose time series and decision tree model. Then based on the prediction results, we propose a zone-based two-stage rebalancing model and an algorithm to solve this model. The proposed model divides the research area into two kinds of zones: zones with deficient bikes (ZDB) and zones with sufficient bikes (ZSB). The objective of the model is to optimize the matching degree of the demand and actual number of shared bikes in each zone. Finally, we employ real world data to validate the flexibility and practicality of our model and algorithm. Experimental results demonstrate that this method can effectively balance all zones.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A Dynamic Shared Bikes Rebalancing Method Based on Demand Prediction*


    Beteiligte:
    Zhang, Xiaojian (Autor:in) / Yang, Hongtai (Autor:in) / Zheng, Rong (Autor:in) / Jin, Zhicheng (Autor:in) / Zhou, Bowen (Autor:in)


    Erscheinungsdatum :

    01.10.2019


    Format / Umfang :

    686284 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Shared mobility choices in metro connectivity: shared bikes versus shared e-bikes

    Liu, Yang / Tang, Rui / Shi, Zhuangbin et al. | Springer Verlag | 2025



    Demand Prediction and Optimal Allocation of Shared Bikes Around Urban Rail Transit Stations

    Liang Yu / Tao Feng / Tie Li et al. | DOAJ | 2022

    Freier Zugriff

    Demand Prediction and Optimal Allocation of Shared Bikes Around Urban Rail Transit Stations

    Yu, Liang / Feng, Tao / Li, Tie et al. | Springer Verlag | 2023

    Freier Zugriff

    BASF supports Chinese shared bikes

    American Chemical Society | 2017