Nowadays, a large number of sensors are equipped on mobile or stationary platforms, which continuously generate geo-tagged and time-stamped readings (i.e., geo-sensory data) that contain rich information about the surrounding environment. These data have irregular space and time coordinates. To represent geo-sensory data, there have been extensive research efforts using time sequences, grid-like images, and graph signals. However, there still lacks a proper representation that can describe both the mobile and stationary geo-sensory data without the information-losing discretization in spatial and temporal dimensions. In this paper, we propose to represent massive geo-sensory data as spatio-temporal point clouds (STPC), and present STPC-Net, a novel deep neural network for processing STPC. STPC leverages the original irregular space-time coordinates, and STPC-Net captures intra-sensor and inter-sensor correlations from STPC. In this way, STPC-Net learns the key information of STPC, and overcomes challenges in data irregularity. Experiments using real-world datasets show that STPC-Net achieves state-of-the-art performance in different tasks on both mobile and stationary geo-sensory data. The source code is available at https://github.com/zhengchuanpan/STPC-Net.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    STPC-Net: Learn Massive Geo-Sensory Data as Spatio-Temporal Point Clouds


    Beteiligte:
    Zheng, Chuanpan (Autor:in) / Wang, Cheng (Autor:in) / Fan, Xiaoliang (Autor:in) / Qi, Jianzhong (Autor:in) / Yan, Xu (Autor:in)

    Erschienen in:

    Erscheinungsdatum :

    01.08.2022


    Format / Umfang :

    2944268 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Spatio-Temporal Analysis of Passenger Travel Patterns in Massive Smart Card Data

    Zhao, Juanjuan / Qu, Qiang / Zhang, Fan et al. | IEEE | 2017



    Rendering Massive Indoor Point Clouds in Virtual Reality

    CASADO COSCOLLA Alvaro / SANCHEZ BELENGUER Carlos / WOLFART Erik et al. | BASE | 2023

    Freier Zugriff

    Bilinear Models for Spatio-Temporal Point Distribution Analysis

    Hoogendoorn, C. / Sukno, F. M. / Ordás, S. n. et al. | British Library Online Contents | 2009


    SHIP TRAJECTORY FEATURE POINT EXTRACTION-BASED SPATIO-TEMPORAL DP METHOD

    MA YONG / JIANG HAIYANG / YAN XINPING | Europäisches Patentamt | 2022

    Freier Zugriff