Grid maps are widely used in robotics to represent obstacles in the environment and differentiating dynamic objects from static infrastructure is essential for many practical applications. In this work, we present a methods that uses a deep convolutional neural network (CNN) to infer whether grid cells are covering a moving object or not. Compared to tracking approaches, that use e.g. a particle filter to estimate grid cell velocities and then make a decision for individual grid cells based on this estimate, our approach uses the entire grid map as input image for a CNN that inspects a larger area around each cell and thus takes the structural appearance in the grid map into account to make a decision. Compared to our reference method, our concept yields a performance increase from 83.9% to 97.2%. A runtime optimized version of our approach yields similar improvements with an execution time of just 10 milliseconds.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Fully convolutional neural networks for dynamic object detection in grid maps


    Beteiligte:
    Piewak, Florian (Autor:in) / Rehfeld, Timo (Autor:in) / Weber, Michael (Autor:in) / Zollner, J. Marius (Autor:in)


    Erscheinungsdatum :

    01.06.2017


    Format / Umfang :

    834952 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Object Detection and Classification in Occupancy Grid Maps Using Deep Convolutional Networks

    Wirges, Sascha / Fischer, Tom / Stiller, Christoph et al. | IEEE | 2018


    Convolutional Neural Networks for Object Detection

    Romão, Bruno / Fagotto, Eric | SAE Technical Papers | 2024


    Deep Generic Dynamic Object Detection Based on Dynamic Grid Maps

    Yan, Rujiao / Schubert, Linda / Kamm, Alexander et al. | IEEE | 2024


    Fast LIDAR-Based Road Detection Using Fully Convolutional Neural Networks

    Caltagirone, Luca / Scheidegger, Samuel / Svensson, Lennart et al. | British Library Conference Proceedings | 2017


    Fast LIDAR-based road detection using fully convolutional neural networks

    Caltagirone, Luca / Scheidegger, Samuel / Svensson, Lennart et al. | IEEE | 2017