Advances in learning-based trajectory prediction are enabled by large-scale datasets. However, in-depth analysis of such datasets is limited. Moreover, the evaluation of prediction models is limited to metrics averaged over all samples in the dataset. We propose an automated methodology that allows to extract maneuvers (e.g., left turn, lane change) from agent trajectories in such datasets. The methodology considers information about the agent dynamics and information about the lane segments the agent traveled along. Although it is possible to use the resulting maneuvers for training classification networks, we exemplary use them for extensive trajectory dataset analysis and maneuver-specific evaluation of multiple state-of-the-art trajectory prediction models. Additionally, an analysis of the datasets and an evaluation of the prediction models based on the agent dynamics is provided.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    MEAT: Maneuver Extraction from Agent Trajectories


    Beteiligte:
    Schmidt, Julian (Autor:in) / Jordan, Julian (Autor:in) / Raba, David (Autor:in) / Welz, Tobias (Autor:in) / Dietmayer, Klaus (Autor:in)


    Erscheinungsdatum :

    05.06.2022


    Format / Umfang :

    234663 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Stochastic Optimal Maneuver Strategies for Transfer Trajectories

    Xu, Ming / Tan, Tian / Xu, Shijie | ASCE | 2012




    Optimal Low-Thrust Trajectories Combined with an Aeroassist Maneuver

    Aaron Trask / Victoria Coverstone | AIAA | 2004


    Clustering Vehicle Maneuver Trajectories Using Mixtures of Hidden Markov Models

    Martinsson, John / Mohammadiha, Nasser / Schliep, Alexander | IEEE | 2018