Accurate prediction of traffic flow can achieve reliable traffic control and inducement. To solve the problems of complex traditional prediction models and insufficient prediction accuracy, this paper proposes a traffic flow prediction model based on long short-term memory (LSTM). First, a real traffic flow dataset is selected to macroscopically analyze the traffic flow from the lane level. After that, the training set and test set are divided, and the LSTM is used to predict the traffic flow. The results of this algorithm are compared with those of gated recurrent unit (GRU) and stacked autoencoders (SAEs), and the results show that this algorithm has the lowest traffic flow fitting error and the highest performance.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Traffic Flow Prediction Model Based on LSTM with Finnish Dataset


    Beteiligte:
    Chu, Qingling (Autor:in) / Li, Guangze (Autor:in) / Zhou, Ruijie (Autor:in) / Ping, Zhengdong (Autor:in)


    Erscheinungsdatum :

    09.04.2021


    Format / Umfang :

    947087 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Traffic Flow Velocity Prediction Based on Real Data LSTM Model

    Wang, Jiaze / Li, Lin | SAE Technical Papers | 2021


    Traffic flow prediction method based on PSO-Attention-LSTM model

    YANG XIAOXIAN / WEI YUTING / WANG ZHIFENG et al. | Europäisches Patentamt | 2023

    Freier Zugriff

    Traffic Flow Velocity Prediction Based on Real Data LSTM Model

    Wang, Jiaze / Li, Lin | British Library Conference Proceedings | 2021


    Traffic flow prediction method based on LSTM-Attention

    QIN XIAOLIN / LIU JIACHEN / SONG LIXIANG et al. | Europäisches Patentamt | 2021

    Freier Zugriff

    Intersection traffic flow prediction method based on LSTM

    ZHANG HUI / LI ZHAOCHUAN / WANG GUANJUN et al. | Europäisches Patentamt | 2024

    Freier Zugriff