Motor vehicle crashes in the United States are one of the significant causes of death. Females involved in motor vehicle fatal accidents show a significant increase in the last decade. This project investigates variables captured within the National Highway Traffic Safety Administration’s reporting system to see the contributing factors toward female driver involvement in crashes that result in a fatality in Tennessee. The findings showed that variables such as driver height, weight, age, and vehicle’s model year have the most influence per mean decrease Gini on female involvement in accidents resulting in fatalities. Government officials can use evidence gained from this study to introduce laws and safety measures to help decrease the rate of fatal accidents.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Vehicle Fatality Analysis by Gender using Predictive Analytics


    Beteiligte:
    Youssef, Mena (Autor:in) / Varol, Serkan (Autor:in) / Catma, Serkan (Autor:in)


    Erscheinungsdatum :

    06.06.2022


    Format / Umfang :

    1154735 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Predictive analytics for vehicle health

    SHAURYA AGARWAL / AYMAN ALALAO / TYLER HENDRICKSON | Europäisches Patentamt | 2024

    Freier Zugriff

    PREDICTIVE ANALYTICS FOR VEHICLE HEALTH

    AGARWAL SHAURYA / ALALAO AYMAN / HENDRICKSON TYLER | Europäisches Patentamt | 2022

    Freier Zugriff

    Predictive analytics for vehicle health

    Europäisches Patentamt | 2024

    Freier Zugriff

    APPLICATION STITCHING, CONTENT GENERATION USING VEHICLE AND PREDICTIVE ANALYTICS

    CRAWFORD EVAN / YEDDNAPUDDI SIVAKUMAR / DOUTHITT BRIAN et al. | Europäisches Patentamt | 2018

    Freier Zugriff

    PREDICTIVE BATTERY ANALYTICS

    Singer, J. / Maheshwari, A. | TIBKAT | 2020