Connected and automated vehicles already are the main force in realizing the vision of intelligent transportation in smart cities. However, enabling broadband connectivity for vehicles brings up new threats of spreading fake information. By broadcasting false sharing data, an attack vehicle has the ability to cause nearby vehicles to get confused or possibly collide in catastrophic accidents. The present study presents a resilient fusion-based multimodal abnormal detection technique, referred to as FMAD. FMAD facilitates a fusion model based on Dempster- Shafer's theory to strengthen confidence in the final detection assessment of detection results from multiple vehicles. FMAD can determine whether a vehicle is spreading false maneuver information with up to 96.18 percent accuracy of confidence. Meanwhile, our method outperforms all existing approaches in terms of the reliability of the detection decision.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    FMAD: Fusion-based Multimodal Abnormal Detection Scheme for Vehicular Communications


    Beteiligte:
    Nguyen, Van-Linh (Autor:in) / Nguyen, Lan-Huong (Autor:in) / Ting, Hao-En (Autor:in)


    Erscheinungsdatum :

    02.06.2024


    Format / Umfang :

    1249204 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Abnormal Signal Detection Method Based on Bimodal Fusion

    Lv, Suhuan / Wang, Zhuolin / Ye, Ou et al. | IEEE | 2022


    TRIMO: An Efficient Multimodal Misbehavior Detection Model in Vehicular Networks

    Nguyen, Van-Linh / Nguyen, Lan-Huong / Liu, Wen-Pin et al. | IEEE | 2024


    Vehicular Wireless Communications

    Mendiboure, Léo / VILLAIN, Jonathan / DENIAU, Virginie et al. | Wiley | 2024


    Vehicular Communications Standards

    Dimitrakopoulos, George | Springer Verlag | 2016