For linear and Gaussian systems, fault detection over a batch of data is well-studied, and analytical solutions exist in a stochastic framework. The parity space approach handles additive faults and can be shown to be equivalent to estimating the state trajectory and then removing its influence on the output sequence. Multiplicative faults in linear systems can be handled using parameter estimation methods, such as the EM-algorithm in combination with the Kalman smoother. For nonlinear and non-Gaussian systems, we propose to estimate the state trajectory and the faults over the data batch using a particle smoother and the EM-algorithm. The result is a generic fault detection and isolation scheme that applies to arbitrary nonlinear and non-Gaussian systems, where the faults are monitored over a sliding window.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Fault detection using nonlinear parameter estimation


    Beteiligte:

    Erschienen in:

    Erscheinungsdatum :

    01.03.2011


    Format / Umfang :

    289331 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Fault detection and diagnosis in propulsion systems - A fault parameter estimation approach

    Duyar, Ahmet / Eldem, Vasfi / Merrill, Walter et al. | AIAA | 1994


    Neural parameter estimators for hybrid fault diagnosis and estimation in nonlinear systems

    Sobhani-Tehrani, E. / Talebi, H.A. / Khorasani, K. | Tema Archiv | 2007


    Recursive Least Squares Parameter Estimation for DC Fault Detection and Localization

    O'Shea, Kellen / Tsao, Bang-Hung / Herrera, Luis et al. | IEEE | 2019


    Improvement of Nonlinear Simulation using Parameter Estimation Techniques

    Kramer, P. / Gimonet, B. | British Library Conference Proceedings | 2000