To assist intelligent traffic management, traffic flow prediction, which plays a crucial role in intelligent transportation system, involves forecasting future traffic flow based on road characteristics and historical traffic data. Due to the inherent complexity of traffic systems, achieving high accuracy in long-term traffic flow prediction poses significant challenges. Therefore, we propose a novel neural network model, which is able to capture both temporal and spatial dependencies in the traffic flow data using the combination of GCN layer and LSTM layer. Experiments have demonstrated that our model is effective and accurate when used to predict the short-term traffic flow.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A Spatial-Temporal Neural Network for Short-Term Traffic Flow Prediction


    Beteiligte:
    Zhang, Kai (Autor:in) / Wang, Shuaiyu (Autor:in) / Yan, Chang (Autor:in) / Jia, Buliao (Autor:in) / Zhu, Guowei (Autor:in)


    Erscheinungsdatum :

    20.12.2024


    Format / Umfang :

    530402 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Short-Term Traffic Prediction considering Spatial-Temporal Characteristics of Freeway Flow

    Jiaqi Wang / Yingying Ma / Xianling Yang et al. | DOAJ | 2021

    Freier Zugriff

    A Short-term Traffic Flow Forecasting Model Based on Spatial-temporal Attention Neural Network

    Dong, Honghui / Zhu, Pengcheng / Gao, Jiayang et al. | IEEE | 2022



    Spatial-Temporal Multiscale Fusion Graph Neural Network for Traffic Flow Prediction

    Hou, Hongxin / Ning, Nianwen / Shi, Huaguang et al. | IEEE | 2022


    Short-term Traffic Flow Prediction Based on Recurrent Neural Network

    Li, Zhijie / Li, Chenghao / Cui, Xu et al. | IEEE | 2021