Registration performs an individual and deciding role in multiple intelligent transport systems. The advancement of deep-learning-based methods enhances the robustness and effectiveness of the preliminary registration stage, although the algorithm will effortlessly fall into local optima when improving the ultimate exactitude. Similarly, traditional method based on optimization has a more reliable performance in terms of precision. However, its performance still counts on the quality of initialization. In order to solve the above problems, we propose a PBNet that combines a point cloud network with a global optimization method. This framework uses the feature information of objects to perform high-precision rough registration and then searches the entire 3D motion space to implement branch-and-bound and iterative nearest point methods. The evaluation results show that PBNet significantly reduce the influence of initial values on registration and has good robustness against noise and outliers.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Global-PBNet: A Novel Point Cloud Registration for Autonomous Driving


    Beteiligte:
    Zheng, Yuchao (Autor:in) / Li, Yujie (Autor:in) / Yang, Shuo (Autor:in) / Lu, Huimin (Autor:in)

    Erschienen in:

    Erscheinungsdatum :

    01.11.2022


    Format / Umfang :

    2543961 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    RDMNet: Reliable Dense Matching Based Point Cloud Registration for Autonomous Driving

    Shi, Chenghao / Chen, Xieyuanli / Lu, Huimin et al. | IEEE | 2023


    Self-Supervised Point Cloud Prediction for Autonomous Driving

    Du, Ronghua / Feng, Rongying / Gao, Kai et al. | IEEE | 2024


    Point Cloud Automatic Annotation Framework for Autonomous Driving

    Zhao, Chaoran / Peng, Bo / Azumi, Takuya | IEEE | 2024


    Global Optimisation for Point Cloud Registration with the Bees Algorithm

    Lan, Feiying / Castellani, Marco / Wang, Yongjing et al. | Springer Verlag | 2022


    3D LIDAR Point Cloud Based Intersection Recognition for Autonomous Driving

    Zhu, Q. / Chen, L. / Li, Q. et al. | British Library Conference Proceedings | 2012