In order to reduce the dependence of controller design on accurate dynamic models of controlled objects and improve the self-learning ability of control systems, a model-free control algorithm of Unmanned Aerial Vehicles (UAVs) is presented. The controller proposed in this paper is based on deep deterministic policy gradient (DDPG) algorithm, and it is able to control UAV to a specified position and attitude without knowing the UAV’s dynamic model. Furthermore, the controller is trained by flight data to obtain the learning ability. Simulation results demonstrate that the convergence speed of learning is fast, and the control effect can meet requirements of UAV’s position and attitude precision when the UAV’s dynamic model is unknown. Besides, the controller can quickly adapt to different environments.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Unmanned Aerial Vehicles Control Study Using Deep Deterministic Policy Gradient


    Beteiligte:
    Sun, Dan (Autor:in) / Gao, Dong (Autor:in) / Zheng, Jianhua (Autor:in) / Han, Peng (Autor:in)


    Erscheinungsdatum :

    01.08.2018


    Format / Umfang :

    329779 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Autonomous Task Planning of Intelligent Unmanned Aerial Vehicle Swarm Based on Deep Deterministic Policy Gradient

    Qiang Jiang / Yongzhao Yan / Yinxing Dai et al. | DOAJ | 2025

    Freier Zugriff

    Developing Flight Control Policy Using Deep Deterministic Policy Gradient

    Tsourdos, Antonios / Dharma Permana, Ir. Adhi / Budiarti, Dewi H. et al. | IEEE | 2019


    Unmanned aerial vehicles : embedded control

    Lozano, Rogelio | TIBKAT | 2010



    Unmanned aerial vehicles : embedded control

    Lozano, Rogelio | SLUB | 2010