Identifying autonomous vehicles (AVs) (e.g., those with adaptive cruise control) from traffic stream benefits enhancing traffic safety, elevating roadway capacity, and assisting autonomous vehicle management. This study tests the feasibility of identifying AVs using externally observed vehicle trajectory information. Two learning-based models are utilized to conduct the identification with car-following trajectory information in a short time window as the input. Four car-following trajectory datasets involving AVs makes from different manufacturers are mixed to build a comprehensive identification model. Results show that AVs and human-driven vehicles (HVs) can be successfully identified with a very high accuracy, i.e., the long short-term memory network can correctly identify 98.17% of AVs and 94.14% of HVs. This verifies the feasibility of using existing infrastructure and economic technologies to identify AVs from HVs, which opens unprecedented data-driven opportunities to study and manage near-future mixed traffic.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Automated Vehicle Identification in Mixed Traffic


    Beteiligte:
    Li, Qianwen (Autor:in) / Li, Xiaopeng (Autor:in) / Yao, Handong (Autor:in) / Liang, Zhaohui (Autor:in)


    Erscheinungsdatum :

    19.09.2021


    Format / Umfang :

    387544 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Automated Mixed Traffic Transit Vehicle Microprocessor Controller

    R. A. Marks / P. Cassell / A. R. Johnston | NTIS | 1981


    Automated mixed traffic transit vehicle microprocessor controller

    Marks, R.A. / Cassell, P. / Johnston, A.R. | Tema Archiv | 1981


    Automated mixed traffic vehicle design AMTV 2

    Johnston, A. R. / Marks, R. A. / Cassell, P. L. | NTRS | 1982


    Automated Mixed Traffic Vehicle Design AMTV 2

    A. R. Johnston / R. A. Marks / P. L. Cassell | NTIS | 1982