This study focuses on a novel approach for estimating the state of charge of lithium-ion batteries utilizing the $\mathscr{H}_{\infty}$ algorithm, renowned for its robustness in handling uncertainties and modeling errors. By implementing a Lyapunov-Krasovskii functional approach and linear matrix inequality technique, a new criterion is presented for the solvability of battery dynamics developed in this paper. In order to show the effectiveness of the developed $\mathscr{H}_{\infty}$ criterion, a numerical example is explored, which implies that the proposed $\mathscr{H}_{\infty}$ observer design can accurately estimate the state of charge of the battery dynamics. Therefore, this algorithm is more resilient against disturbances and uncertainties, underlining its potential for accurate state of charge estimation - a critical metric for electric vehicle battery management. As a result, these findings enhance state of charge estimation in the battery systems and dependable battery operation in diverse application scenarios.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A Robust H∞Observer Design for State of Charge Estimation of Lithium-Ion EV Batteries with Parametric Uncertainties


    Beteiligte:
    Vinothini, K. (Autor:in) / Manivannan, R. (Autor:in) / Vigneswar, N. (Autor:in) / Hardeep, K. (Autor:in)


    Erscheinungsdatum :

    31.07.2024


    Format / Umfang :

    414982 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Robust State of Charge Estimation of Lithium-Ion Batteries via an Iterative Learning Observer

    Gorski, David / Wu, Hai / Li, Meng-Feng et al. | SAE Technical Papers | 2012


    Robust State of Charge Estimation of Lithium-Ion Batteries via an Iterative Learning Observer

    Li, M.-F. / Chen, W. / Wu, H. et al. | British Library Conference Proceedings | 2012



    Luenberger Observer for Lithium Battery State-of-Charge Estimation

    Barsali, Stefano / Ceraolo, Massimo / Li, Jiajing et al. | British Library Conference Proceedings | 2020


    State of charge estimation of a lithium-ion battery using robust non-linear observer approach

    Gholizadeh, Mehdi / Yazdizadeh, Alireza | IET | 2018

    Freier Zugriff