This study employs various machine learning algorithms (MLAs) to map out the stator and rotor pole arc angles of 6/14 switched reluctance motor (SRM) and their static and dynamic nonlinear characteristics. The MLAs under consideration include a back-propagation neural network, radial basis function neural network, generalized regression neural network, and conventional regression fitting algorithms. This work introduces an extensive analysis of these MLAs, including their structure, fundamentals, and learning process. Additionally, a comprehensive evaluation framework is established, encompassing assessments of training results, generalization capability, and computational time. It also addresses key challenges inherent in learning MLAs, specifically overfitting and underfitting issues. These evaluation criteria guide the selection of the optimal machine learning topology tailored for geometry optimization in SRMs. The chosen MLA is then applied to predict the optimal pole arc angles that enhance the average torque and decrease torque ripples of the considered SRM.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Switched Reluctance Motor Design Optimization: A Framework for Effective Machine Learning Algorithm Selection and Evaluation


    Beteiligte:
    Omar, Mohamed (Autor:in) / Bakr, Mohamed (Autor:in) / Emadi, Ali (Autor:in)


    Erscheinungsdatum :

    19.06.2024


    Format / Umfang :

    1725704 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    SWITCHED RELUCTANCE MOTOR CONTROL

    TANG LIXIN / NIU GENG | Europäisches Patentamt | 2023

    Freier Zugriff

    Switched reluctance motor control

    TANG LIXIN / NIU GENG | Europäisches Patentamt | 2021

    Freier Zugriff

    Switched Reluctance Motor Drives

    Chau, K. T. | Wiley | 2015