Reinforcement learning (RL)algorithm is employed in solving energy management problem for electrified powertrain in real-world driving scenarios and the application process is streamlined. A near-global optimal control policy is articulated for the energy management system (EMS) using Q-learning algorithm which is real-time implementable. The core of the EMS is an updating optimal control policy in the form of a changing look-up table comprising near-global optimal action value function (Q-values) corresponding to all feasible state-action combinations. Using the updating control policy, the EMS can optimally decide power-split between electric machines (EMs) and internal combustion engine (ICE) in real-world driving situations.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Real-Time Optimal Energy Management of Electrified Powertrains with Reinforcement Learning


    Beteiligte:
    Biswas, Atriya (Autor:in) / Anselma, Pier G. (Autor:in) / Emadi, Ali (Autor:in)


    Erscheinungsdatum :

    01.06.2019


    Format / Umfang :

    1699549 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch





    Vehicle system simulation for electrified & conventional powertrains

    Jones, Stephen / Ellinger, Raimund | Tema Archiv | 2012


    Vehicle system simulation for electrified & conventional powertrains

    Jones, S. / Ellinger, R. | British Library Conference Proceedings | 2012


    Electric machine design approaches for electrified powertrains

    Leonardi, F. / Munoz, A. / Guo, L. et al. | British Library Conference Proceedings | 2018