Now most of the hybrid vehicle control strategies are aiming at the optimal fuel economy and driving cycle must be pre-known. Changing driving condition will influence the optimal results greatly. Therefore, a neural network controller (NNC) is proposed, which can improve fuel efficiency and the battery's SOC of a dual-mode hybrid vehicle in most driving conditions. The controller is trained through genetic algorithm to optimize the weights of the network. By using different driving cycle in the NNC training, this controller can be well functioned in variety conditions. The proposed NNC is testified through the hardware-in-loop simulation.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Dual-mode hybrid vehicle neurocontrol


    Beteiligte:
    Han Lijin (Autor:in) / Qi Yunlong (Autor:in) / Xiang Changle (Autor:in)


    Erscheinungsdatum :

    01.08.2014


    Format / Umfang :

    763017 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Neurocontrol for lateral vehicle guidance

    Neusser, S. / Nijhuis, J. / Spaanenburg, L. et al. | Tema Archiv | 1993


    Neurocontrol and Adaptive Control

    Omatu, S. | British Library Online Contents | 1992


    Neurocontrol design using ordered networks

    Lavretsky, Eugene | AIAA | 2000


    Immunized neurocontrol - concepts and initial results

    Krishnakumar, K. | Tema Archiv | 1992


    Robust Neurocontrol for Autonomous Dynamic Soaring

    Kim, Eric J. / Perez, Ruben E. | TIBKAT | 2022