The performance of an inertial autonavigator can only be as good as the accuracy to which the system is initially aligned. Optical methods of alignment can be performed with high precision; however, this technique requires external equipment and is subject to some physical constraints, such as land-based operation. The general problem discussed here is the use of an automatic azimuth alignment technique known as gyrocompassing. In the use of the gyrocompassing technique to obtain azimuth alignment, accuracies are degraded considerably by two dominant error sources, the level axis controlling gyro drift rate and the imperfections of reference or independent velocity information. Consequently, an optimum performance controller is developed for driving the system in this mechanization and is based on a priori knowledge of the second-order statistics of the system error sources. The performance criteria will be to minimize the mean square azimuth error.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Optimum Alignment of an Inertial Autonavigator


    Beteiligte:

    Erschienen in:

    Erscheinungsdatum :

    01.11.1967


    Format / Umfang :

    1824554 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch





    Alignment of inertial autonavigator

    McMurray, L.R. | Engineering Index Backfile | 1961



    A Novel Inertial Coarse Alignment Method

    Silson, Peter / Jordan, Simon | AIAA | 2010