The rising quantity of vehicles has intensified traffic congestion, pollution, and road accidents. This paper introduces an IoT-enabled traffic management system utilizing CNN-TransLSTM, a hybrid model that combines convolutional neural networks, LSTM, and transformers for effective traffic prediction. Min-max normalization eliminates outliers and maintains data integrity, whereas feature extraction identifies essential variables such as weather, traffic density, and direction. The model attained a prediction accuracy of 91.25%, exceeding that of individual CNN, LSTM, and Transformer models. This method emphasizes the capacity of smart cities to utilize deep learning and IoT for superior traffic control, resulting in increased efficiency and sustainability.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    IoT-Enabled Traffic Management Systems using CNN-TransLSTM for Next-Generation Smart Cities


    Beteiligte:


    Erscheinungsdatum :

    21.02.2025


    Format / Umfang :

    409506 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch





    TrafficIntel: Smart traffic management for smart cities

    Saikar, Anurag / Parulekar, Mihir / Badve, Aditya et al. | IEEE | 2017


    Smart Traffic Management System using IoT Enabled Technology

    Bali, Vikram / Mathur, Sonali / Sharma, Vishnu et al. | IEEE | 2020


    Intelligent Traffic Management Systems for Next Generation IoV in Smart City Scenario

    Vijayaraghavan, V. / Rian Leevinson, J. | Springer Verlag | 2020