An exact solution is provided for the multiple sensor bias estimation problem based on local tracks. It is shown that the sensor bias estimates can be obtained dynamically using the outputs of the local (biased) state estimators. This is accomplished by manipulating the local state estimates such that they yield pseudomeasurements of the sensor biases with additive noises that are zero-mean, white, and with easily calculated covariances. These results allow evaluation of the Cramer-Rao lower bound (CRLB) on the covariance of the sensor bias estimates, i.e., a quantification of the available information about the sensor biases in any scenario. Monte Carlo simulations show that this method has significant improvement in performance with reduced rms errors of 70% compared with commonly used decoupled Kalman filter. Furthermore, the new method is shown to be statistically efficient, i.e., it meets the CRLB. The extension of the new technique for dynamically varying sensor biases is also presented.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Exact multisensor dynamic bias estimation with local tracks


    Beteiligte:
    Xiangdong Lin (Autor:in) / Bar-Shalom, Y. (Autor:in) / Kirubarajan, T. (Autor:in)


    Erscheinungsdatum :

    01.04.2004


    Format / Umfang :

    810563 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Multisensor dynamic bias estimation with earth-centered earth-fixed coordinate system

    Da, L. / Shaohong, L. | British Library Online Contents | 2007


    Multisensor multitarget bias estimation for general asynchronous sensors

    Lin, X. / Bar-Shalom, Y. / Kirubarajan, T. | IEEE | 2005



    A practical bias estimation algorithm for multisensor-multitarget tracking

    Taghavi, Ehsan / Tharmarasa, Ratnasingham / Kirubarajan, Thia et al. | IEEE | 2016