The complex traffic and road environment pose considerable challenges to the accuracy, timeliness, and adaptive ability of connected and autonomous vehicles (CAVs) in making driving decisions. This paper uses vehicle collaboration and integrates the adaptive learning capabilities of machine learning and the interpretation capabilities of expert systems (ESs) in a unified architecture to form a hybrid autonomous driving guidance system, which not only solves the “bottleneck” of knowledge acquisition during the construction of expert systems but also solves the “black box” phenomenon of machine learning in the decision-making process. First, an autonomous driving strategy based on deep reinforcement learning (DRL) is proposed for CAVs to make decisions and extract corresponding rules. Next, we design an ES knowledge base expansion method including rule extraction, rule sharing, and rule test. Particularly, vehicular blockchain is adopted to ensure user privacy and data security during the rule-sharing process. Third, hybrid autonomous driving guidance combining ES and machine learning is proposed for CAVs to make accurate and efficient decisions in different driving environments. Once the strategy is well trained, it can effectively guide CAVs to cope with the complex traffic environment. Extensive simulations validate the performance of our proposal in terms of decision-making accuracy, effectiveness, and safety.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Hybrid Autonomous Driving Guidance Strategy Combining Deep Reinforcement Learning and Expert System


    Beteiligte:
    Fu, Yuchuan (Autor:in) / Li, Changle (Autor:in) / Yu, F. Richard (Autor:in) / Luan, Tom H. (Autor:in) / Zhang, Yao (Autor:in)

    Erschienen in:

    Erscheinungsdatum :

    01.08.2022


    Format / Umfang :

    2056632 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch





    Autonomous Driving with Deep Reinforcement Learning

    Zhu, Yuhua / Technische Universität Dresden | SLUB | 2023


    Combining Planning and Deep Reinforcement Learning in Tactical Decision Making for Autonomous Driving

    Hoel, Carl-Johan / Driggs-Campbell, Katherine / Wolff, Krister et al. | IEEE | 2020


    On Deep Reinforcement Learning for Target Capture Autonomous Guidance

    Siddique, Umer / Sinha, Abhinav / Cao, Yongcan | AIAA | 2024