In this paper, a neural network approach is presented for solving the problem of estimating road grade and vehicle mass, for the case of simulated heavy-duty vehicles (HDVs) driving on highways. After training, and using only signals normally available in HDVs, the (feedforward) neural network provides road grade estimates with an average root mean square (RMS) error of around 0.10 to 0.14 degrees, and mass estimates with an average RMS error of around 1%, when applied to two different test data sets (one with synthetic roads and one based on a real road), not used during the training phase. The estimates obtained outperform road grade and mass estimates obtained with other approaches.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Road Grade and Vehicle Mass Estimation for Heavy-duty Vehicles Using Feedforward Neural Networks


    Beteiligte:
    Torabi, Sina (Autor:in) / Wahde, Mattias (Autor:in) / Hartono, Pitoyo (Autor:in)


    Erscheinungsdatum :

    01.09.2019


    Format / Umfang :

    2196946 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Vehicle mass estimation for heavy duty vehicles

    Wang,L. / Zheng,H. / Zong,C. et al. | Kraftfahrwesen | 2015


    Road-Tire Friction Potential Estimation for Heavy-Duty Vehicles

    Büteröwe, N. / Müller, G. / Müller, S. et al. | British Library Conference Proceedings | 2023


    Vehicle Mass Estimation for Heavy Duty Vehicle

    Zong, Changfu / Zheng, Hongyu / Wang, Linlin et al. | SAE Technical Papers | 2015


    Vehicle Mass Estimation for Heavy Duty Vehicle

    Wang, Linlin / Zheng, Hongyu / Zong, Changfu et al. | British Library Conference Proceedings | 2015


    Road damage caused by heavy duty vehicles

    Göktan, A. / Mitschke, M. | Tema Archiv | 1995